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PRESENT STATUS OF LITHIUM-DIFFUSED 

SILICON SOLAR CELLS 

I. INTRODUCTION 

The present report is concerned with lithium-diffused silicon solar cells. 

First, a brief history of work on lithium-diffused semiconducting silicon will be 

given, and a few experimental results on the radiation effects and the after- 

effects will be discussed. Second, the radiation damage and recovery of 

lithium-diffused solar cells will be analyzed from the physical point of view. 

Finally, experimental results of the initial efficiency, and the subsequent radi- 

ation damage recovery will be discussed. 

The solar cells used in this study were made by RCA Laboratories, Heliotek, 

Hoffman Electronics Corp. , and Texas Instruments, Inc. The enthusiasm and 

active cooperation of these suppliers are appreciated. The experiments were  

performed by Messrs. G. Meszaros, Y. M. Liu, and W. McGunigal. The dis- 

cussions among the members of the Radiation Physics Section of Goddard Space 

Flight Center were of great help in planning and carrying out the program. 

addition, encouragement of Mr.  M. Schach on this project is hereby acknow- 

ledged. 

In 
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II. HISTORICAL REVIEW 

Diffusion of lithium (Li) in silicon (Si) was first investigated by Fuller and 

Ditzenberger (Reference 1) by the p-n junction method, in which the location 

of the junction, which is formed by diffusing Li into p type Si, is measured. 

They found that 

. 

(I1 - 1) 

D is the diffusion coefficient and T is the absolute temperature. This leads to 

a room-temperature value of D = 1.3 x cmasec-l. At 4OO0C, D will be 

3.58 x lo-’ cmasec-l. 

In a later work (Reference 2), Fuller and Severiens gave, by measuring mobility 

vs applied field, 

D = 2 . 3  X10-3 exp(-7.65 x cmasec-’. (I1 - 2) ) 
This would give D = 2 . 0  x 10-14cmasec-1 at room temperature and 

2 . 5  x lo-* cma sec-l at 40OoC. In this experiment, Li is again diffused into 

p-type Si. Because there is an interaction and precipitation of Li in p-type, 

Boron (B) doped Si (see Reference 3), the value of D might be different from 

that obtained when Li is diffused into n-type Si o r  pure Si, but no data pertaining 

to these cases are available. Furthermore, since Li interacts effectively with 

oxygen (0) to form LiO’ or  other forms of the oxide, which are stable at  room 

temperature (Reference 4), it should be noted that all these diffusion studies 

were carried out with Si crystals grown from a quartz crucible, i. e. , Si of high 

0 content. A recent work of Gilmer, et al. (Reference 5) gives an up-to-date 

and complete study of Li-0 complexes as donor impurities in Si. 
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The investigation of the existence of the interaction of Li with the complex 

defects introduced by irradication was initiated by Vavilov and his  co-workers 

(Summarized in Reference 6). By observing the change of the cnaracteristics 

of the temperature dependence of carrier concentration, and of the lifetime of 

minority carr iers  in p-type Si, with or without Li doping, the following obser- 

vations were made: 

1. In n-type Si which was obtained by inversion from p-type Si, radiation 

damage results in reversion to the original p-type. This is explained a s  due to 

the interaction of Li with the radiation-induced defect. The donor concentration 

contributed by Li is reduced. This effect is called precipitation by Vavilov. 

2. The rate of production of A-centers (0 vacancy complex) in Si contain- 

ing Li is less than that in Si containing phosphorous (P) or  arsenic (As). This 

is attributed to the formation of the LiO' complex. Thus, the effective oxygen 

concentration which provides a component of the A-center is reduced. 

3. The degradation of the lifetime due to electron irradiation in Si con- 

taining Li shows a saturation for 1 Mev electrons after about 1 X 1015e/cma. 

In Si containing P but no Li, no such saturation, indeed, only a continuous 

degradation, is observed. 

We will discuss more specifically the first two aspects later. The third aspect 

has not been verified (Reference 7). Although it was not expressly stated, pre- 

sumably all crystals studied by Valvilov et  al. have a high oxygen content. 

Vavilov attributes the idea that the disapperance of defect centers is due to the 

interaction of impurity centers with structural defects, to Roberts et al. (Refer- 

ence 8). In their brief paper, Roberts et al. found an increase in the majority 

car r ie r  lifetime with an increase of the oxygen concentration, in contradiction 

to the usual expectation that any departure from crystal perfection will reduce 

the lifetime. These authors presented an interesting hypothesis that there is an 

unknown center which either can be nullified by chemical interaction with oxygen 

or  competes with oxygen for a place in the lattice. This point has not been 
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further verified. In the meantime, a successful application of this idea to the 

case of defects introduced by irradiation is clearly shown by Vavilov et al. 

It was the lecture of Vavilov (Reference 6) that revived the interest of 

Rappaport in investigating the introduction of Li into Si solar cells. * Immedi- 

ately a study was made of the surface barrier diode with Li diffusion (Reference 

9). The degradation of the diffusion length was measured as a function of the 

radiation flux. A recovery of the diffusion length was observed after cessation 

of the radiation and a waiting period of several hours. 

An attempt was  made to apply this idea to solar cells with the following configur- 

ations: (1) n-on-p solar cells, (2) p-on-n solar cells made from pulled crystals, 

and (3) p-on-n solar cells made from float zone crystals but with a high P con- 

tent ( -  1 hz cm o r  less). In all cases, results the same as those observed in 

the case of the surface barrier diode were not obtained. 

It was the contribution of Wysocki, at  this point, to experiment on p-on-n solar 

cells made from float zone crystals with a low P content (larger than 10 cm). 

The result w a s  spectacular: For the first time, a practically complete recovery 

at room temperature was observed in the solar-cell performance which had been 

degraded by the radiation. For 1 Mev electron irradiation and for an accumu- 

lated flux of 1 X 1014 e/cma, a complete recovery was observed in a matter of 

hours. If the flux is higher than this value, recovery is less complete. This 

phenomenon is also dependent on the rate of radiation flux. The above irradia- 

tion was carried out at a rate of 1 x lo1* to 1 x 10” e/cmahr. If the flux rate 

is 5 X lo1’ e/cmahr in fact, because the rate of the recovery is compatible with 

the rate of damage introduction, no damage is observed at all. All these obser- 

vations have an analogy in the annealing of n-on-p solar cells (Reference 10). 

The critical flux levels are equal in both cases, within the accuracy of the exper- 

iment. If recovery is permitted intermediately by reducing the radiation rate, 

*Private communication. 
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the recoveries are complete in both cases. In fact, in this way the total flux 

can exceed the critical flux obtained the result of a fast irradiation rate. 

This brings the status up to early 1966. The progress made since is the main 

material of the present report. 
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IIL 

The present models of the mechanism of the spontaneous annealing of Li- 

diffused solar cells a r e  based on indirect observations and are mostly specula- 

tive. Two different models exist, one in which the role of Li is to compensate 

the defects (Reference 11) and one in which the role of Li is to form metastable 

defects (Reference 12). 

PHYSICAL MODELS OF SPONTANEOUS ANNEALING 

The Role of Li is to Compensate the Defects 

When the Li is to compensate the defects, Li' is moving randomly in the 

crystal lattices by diffusion. When a defect due to the radiation occurs near 

the instantaneous site of Li', a defect representing a recombination or  trapping 

state to the minority carriers in the n-region would have a negative charge; 

therefore, an interaction with Li' would lead to a neutralization of the charge 

state and a consequent annealing. 

One support of this model is the experimental data of the temperature depen- 

dence of the recovery time (Fig. III-1). The isothermal recovery times r at Oo, 

25', and 78OC are measured at toom temperature. 

ture range and radiation fluxes of 1 and 3 x 101*e/cma of 1 Mev electron radia- 

tion the plot of T vs. 1/T, where T is the absolute temperature, is a straight 

line whose slope of 0.66 ev corresponds closely to the value of the activation 

energy of diffusion previously reported (Reference 1 and 2). But in view of the 

lack of the precise value of the activation energy of diffusion and the limited 

temperature data used, this cannot be treated as conclusive evidence. There 

is also some evidence that, even if the annealing is controlled by the diffusion 

of Li to the compensation site, a complexity could result from the recent obser- 

vation that the recovery rate is dependent on the density of the defect. * This 

is not taken into account in the treatment of the diffusion theory from which the 

experimental results were analyzed. 

For this limited tempera- 

*P. H. Fang and Y. M. Liu (to be published). 

6 



L 

7 



Probxbly the strongest argument against this model is that the center which is 

assumed to be annealed by Li cannot be identified with any presently known 

dcfcct. * AS described in the beginning., thc spontaneous annealing is ohscrved 

in float zone grown, but not pulled, Si; this excludes the importance of thc A- 

center. 

tion material in, and low concentration B material which undergoes subsequent 

conversion to n-t-ype Si: thus the recovery is independent of E-center defects. 

Finally, the divacancy defect cannot be important because of its low rate of 

production. 

Secondly, the annealing is ohscrved in moderate-to-low P concc’ntra- 

Another difficulty of this model is the following observation: Solar cells, after 

electron irradiation and after an almost complete recovery, are heat-treated up 

to 350°C for several hours to look for signs of reverse annealing. In this tem- 

perature range, all known defects are annealed by a dissociation of the vacancy 

from the complex. * In the case of Li, therefore, a dissociation of Li from the 

defect, o r  a dissociation of the defect itself, should lead to an observation of a 

change in photovoltaic characteristics. 

able changes were observed. 

The result is negative - no ascertain- 

This deductive reasoning suggests the simpler and more direct model which 

will be discussed next. 

The Role of Li is to Form Metastable Defects 

When high-energy particles enter the Si lattice, vacancy-interstital pairs 

will be created. 

temperature, but vacancies a r e  less unstable and most of them a re  transformed 

into stable states by forming complexes with impurities or  with other vacancies. 

In float zone Si with Li as the major impurity, there is a great probability that 

there will be an interaction between the vacancy and Li. 

been observed by Vavilov (Reference (6). Goldstein has conjectured the exist- 

ance of a Li-V (where V denotes vacancy) complex through electron paramag- 

netic resonance studies (Reference 13). 

Both vacancies and interstitials are highly unstable at room 

This interaction has 
4 

. 

*G. Watkins, loc. c.f. Reference 6, p. 97.  
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The model of the Li-V complex is an interstitial Li' and a V- in a lattice posi- 

tion (Reference 12). Since Li' forms a stable state at an interstitial position 

in the regular Si lattice, even under Coulomb attraction by one of the four 

nearest neighbor Si ions, the Li' probably could maintain a metastable state. 

The annealing mechanism in this model, the activation energy of the recovery 

time in the microscopic diffusion, is assured to be approximately equal to that 

of the macroscopic diffusion. 

Much basic information is needed to determine the more valid of the present 

phenomenological models. This knowledge is equally needed in the evaluation 

and the projection of the present result to technical applications. In this re- 

spect, an important question is that of stability over extensive periods of time 

and over a wide range of temperature, Also a very interesting question is 

whether the recoverability from a large desage of radiation flux is limited by 

the initial Li concentration. If each annealing requires one Li' ion in the crys- 

tal, eventually, when the number of vacancies becomes approximately equal to 

the number of Li' ions, the spontaneous recovery will have ceased. A s  will be 

discussed later, we have noted that the defect production rate as well a s  the 

degree of recovery depends appreciably on the concentration of the instantan- 

eous defect density, and, under some dynamic conditions, it seems that the 

extent of recovery after an extensive accumulated flux dose does not seem to 

be limited by the available Li concentration. A possible mechanism will now 

be given. 

According to the second model of annealing, the recovery of the radiation dam- 

age is due to the occupancy of the lattice position by Li' of the Li'-V- complex 

defect. This position requires the trapping of an electron by Li+, thus, 
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is thermodynamically not stable. "he most stable configuration is 

+ 
-Li  + Si +e,  i & 

which describes an interchange between interstitial (i) and lattice (&) positions 

and a subsequent capture of a hole. Two sources of Si. are  
1 

1. A Frankel defect of thermal origin, and 

2. In the case of simultaneous irradiation, continuously created Si. 

The existence of such processes will be vital in determining the ultimate 

limitation of the practical use of Li solar cells. 
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N. DIFFERENT LI SOLAR CELLS 

On the basis of the present knowledge of the interesting properties of the inter- 

action of the radiation-induced defect with Li, four types of Li solar cells have 

been developed: 

Type I. 

Type II. 

Type III. 

Type IV. 

p-on-n with float zone Si, 

p-on-n (phosphorus) on n (lithium) with float zone Si, 

p-on-n with pulled Si, and 

n-on-p with float zone Si, with a relatively small Li concen- 

tration in the p-region. 

Type I Cell. The Type I cell is shown in Figure W-1. This is the prin- 

cipal type of Li cell. The important constituent of the cell is a Si crystal of 

low 0 content, a p (up to now, boron)-type front region, and Li as the domi- 

nant donor in the n-region. Most discussions up to now were based on this 

type of solar cell, and it will be described exclusively in later sections. Since 

a sufficiently specific description of the cell without misnomer requires a cum- 

bersome expression and since the cell will be frequently referred to in the 

future, it seems most desirable to coin a special name for this type of cell. 

It is remarkable that the cells were made by Wysocki before we knew or had 

any clear physical picture of the nature of the radiation damage. The foresight 

of Wysocki (Reference 7)  was instrumental in the cells discovery and it seems 

only proper to designate this type of cell as the Wysocki cell. Therefore, the 

type I cell will be so designated hereafter. 

Type 11 Cell. The principle of the type I1 cell is based on the following 

observation: Because of a compensation near the p-n junction and because of 

the diffusion profile configuration, there is a depletion of Li concentration in 

the n-region near the p-n junction. With irradiation, further reduction of free 

Li results, because of a complex formation between Li and the radiation-induced 
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defect. This diminishing of Li will  be most effective near the junction because 

of the original comparatively lower Li content in this region. 

An approach to solving this problem is to make double n-layers*. The first  

n-layer, consisting of the p-n junction and the immediate n-region, is a few 

microns thick and is made by the dtffusion of P into Si, and the layer thickness 

is controlled either by a diffusion o r  by a subsequent lapping. The p-layer is 
then diffused into the phosphorus n-layer to form the p-n junction. A Li dif- 

fusion, in the same manner as in the Wysocki cell, is then performed. 

Figure IV-2 is  a diagram of a Li Type II cell. The radiation damage property 

of the type 11 solar cells will be discussed in the Section entitled "Some ELxperi- 

mental Results Pertaining to Space Applications. IT 

Type III Cell  When Si of high 0 content, a s  is found in pulled crystal, is  

used, the defect induced by the radiation is stable a t  room temperature. How- 

ever, an effective annealing stage occurs a t  a temperature of 120' to 15OoC 

(Figure IV-3.) This is to be compared with the effective annealing tempera- 

ture of about 4OO0C in the usual n-on-p solar cell. t The nature of this defect 

has been conjectured a s  a vacancy forming a complex with the Li-0 pair. 

From a practical point of view, if a high-temperature annealing is to be used 

as a means of solving the problem of the radiation damage, a 15OoC annealing 

is much to be preferred from the point of view of both the demand of the stabil- 

ity of the components and connections in the annealing machinery and in the 

required thermal power of annealing. 

~~ 

*P. H. Fang, NASA Goddard Space Flight Center (Patent pending). 

tP. H. Fang, Astron. Acta (to appear). 
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Type IV Cell. In the original work of Vavilov (Rcfcrencc G )  an interesting 

observation was reported: In p-type (B-doped) Si (Rclcrcncc :i), when Li is 

introduc-ed, an over-compensation resulted in the conversion to n-type Si. 

subsequent electron irradiation showed a reversion to p-type. 

tion wa.s that Li-B pairs are formed and the effective original acceptors a r c  

reduced in number. With electron irradiation, the defects formed (presumably 

single vacancies) interact strongly with Li, B is reliherated, and the effect 

results in a restoration of the majority carr ier  concentration. 

A 

The interpreta- 

Suppose now a n-on-p solar cell is made from p-type Si with a high concentra.- 

tion of B, say, corresponding to 1 SI - cm. If the introduction of Li resulted in 

the formation of p-type Si of 10  $2-cm, the solar cell is now a 10 0 -cm n-on-p 

cell. After irradiation of this type of cell, assuming there is no radiation effect 

other than the reconversion of high resistivity p-type to low resistivity p-type, 

a radiation-induced improvement in the solar-cell performance could be 

expected. 

16 



V. LI SOLAR CELL TECmTOLOGY 

The preparation of Li solar cells has been described previously in the work of 

Topfer et a1 (Reference 14). More up-to-date reports on the technological pro- 

cesses will become available in the near future (Reference 15). Therefore, the 

description here will emphasize the physical aspects and will leave out the tech- 

nical processing. 

Figure IV-1 shows the schematic of a p/n, Li-diffused, Si solar cell. In the 

fabrication, the only difference from the ordinary p/n solar cell of B @-type) 

and P (n-type), is that a Li diffusion is carried out from the base of the solar 

cell. Since the diffusion coefficient of Li is enormously greater than that of the 

presently used p-layer dopant (B), the Li diffusion is carried out after the high 

temperature process of p-n junction formation by B diffusion. The Li diffusion 

is then carried out near 4OO0C. 

There a re  three commonly used methods of diffusing Li into Si: 

1. Paint the Si with a Li-oil emulsion. This is the simplest method, but 

the amount of Li applied to the surface cannot be easily controlled. The diffu- 

sion is carried out in a high-temperature furnace. 

2. Immerse the Si in a Li-Sn alloy bath. The temperature of the alloy in 

the liquid state is about 40OoC. The diffusion time required is usually longer 

than in 1, but a better uniformity can result. This method also presents some 

difficulty in the protection of the p-layer and preventing edge leakage. 

3. Evaporate Li into Si with a subsequent diffusion. This method allows 

for better control of the amount of Li applied to the Si surface. In comparison 

with the Li-oil emulsion, since the oil is much less pure, the Li evaporation 

directly from Li metal reduces the introduction of unknown or  undesired 

impurities. 

17 



On the problem of the solubility of Li in Si, the following parameters a re  prob- 

ably important and are presently largely unknown. 

1. The optimum concentration of Li. From the radiation damage and 

annealing point of view, high Li content is desirable. But high Li content could 

also result in a larger carr ier  removal rate, a s  observed in an analogous case 

in p-type Si (Reference 16). 

According to the experimental data of Pel1 (Reference 17) ,  the solubility of Li 

at 27' C is 1013 cm-". The concentration of Li obtained by the current diffusion 

practice is of the order of 1 0  

super-saturated. The consequence is an expectation of the precipitation. The 

quantitative value of the precipitation time is unknown at the present. 

2. The effect of the impurity on the solubility of Li. There is an obvious 

16  
to 1017cm-3. Therefore, the system is highly 

difference in the case of p-type Si from that of n-type Si. This is qualitatively 

explained by the electrolytic solution model (Reference 18). The Si specimens 

used in earlier experiments were pulled crystal of impurity concentration, 

before the Li diffusion, of the order of 1014 to lo1" impurities ~ m - ~ .  Since in 

the pulled crystal the 0 content is greater than 1016cm-3 and there is a strong 

interaction between Li and 0 to form LiO- and LiaO, the problem of what will 

be the solubility of Li in float zone Si where the 0 content will be two or more 

orders of magnitized less than that in pulled crystal is still to be investigated. 

Another problem is the solubility of Li in very pure Si of impurity content of 

the order of 1013cm-3, corresponding to a resistivity of about 103hZ-cm. If 

one is to emphasize the room temperature annealing, any impurity, other than 

Li, should be minimized because, according to present bowledge, the defects 

associated with all impurities, except those of Li, a r e  stable up to 15OoC or 

higher. Therefore, it is natural to start  with Si material with as low an im- 

purity concentration as possible. 

18 



3. The effect of dislocations on the solubility of Li. Two kinds of crys- 

tals used currently in Li solar cells are float zone and Lopex. * While float 

zone material has a dislocation concentration in the range of 1014cm-3, Lopex 

has about two orders of magnitude less. There is some indication that the dif- 

fusion coeficient of Li in Lopex material is smaller than in float zone 

material. ** 
4. In connection with the solubility, there is also an interesting problem 

of the concentration profile. Since in the Li solar cell the donor is introduced 

by diffusion, and, furthermore, since a p-n junction is present during this 

diffusion, the region having an excessively high concentration, greater then 

lo1’ cm-3 , of acceptom behaves as a31 infinite sink. Therefore, the concen- 

tration of Li cannot approach a constant value throughout the depth of the cell. 

This unintentional concentration profile actually satisfies the configuration of 

a p-on-n drift field solar cell and was considered by Ross long before its radi- 

ation and annealing properties were investigated. *** 

*A product of Texas Instruments, Inc. 

**D. Kendall (private communication). 

***B. Ross (assigned to Hoffman Electronics C o w . ) .  Patent pending. 
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VL RADIATION DAMAGE AND RECOVERY 

The general setup for studying the photovoltaic performance of solar cells before 

and after radiation, and the history of recovery is similar in practice to that of 

the early studies of the usual n-on-p solar cells except in one aspect: In a n-on- 

p case, only the initial characteristics and the radiation damage a r e  measured; 

the recovery, i f  any, will be much less than 1 percent. 

In our measurement, less emphasis is placed on the assimilation of space con- 

ditions both with respect to radiation and to photo-illumination, and more 

emphasis is placed on a simple and repeatable measurement. In view of the 

great gap existing between the basic physical properties and their relation to 

device parameters, our philosophy has been to look at only the gross device 

characteristics. Specific basic studies a r e  made only when some significant 

effects a r e  recognized. In this way, information for practical purposes is pro- 

vided. At the same time, in recognition of the great complexity of the elec- 

tronic device - the solar cell in the present case - as a physical system, 

unless the effect of degradation of the recovery is large, it is almost meaning- 

less to attempt to describe an effect a s  significant, which might be extraneous. 

The equipment and experimental routine for the above investigation a r e  quite 

simple and have been described elsewhere (Reference 19). The task in all the 

measurements is to compare solar cells made by different processes or  irradi- 

ated under different conditions. 

The primary investigation of the radiation damage in the Wysocki cell uses 

1 Mev electron irradiation at room temperature. Unless otherwise specified, 

this will always be the condition of radiation. When the current-voltage (i-v) 

curve is measured for the cell before and after irradiation, typical data like 

those of Figure VI-1 a re  obtained. The i-v curves in the figure represent 

isothermal recovery from an initial damage which is shown as dotted lines: 

20 
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1701. the pi.actic-nl rcason thnt the location of thc radiation sourcc and the site 

whew the> nic:wureniaits w c r e  matlc is not contiguous, the points in the dotted 

liiic, were obtxincd by  extrapolating thc isothermal (lata back to zcro timc. 

From this, we estimated the initial damage as of thc ordcr of 20-percent after 

a 1 Mev, 10'4c/cm'' irradiation. 

ordinary p-on-n (no Li) solar ccll ant1 is considerably heavier than that of the 

ordinary n-on-p solar cell after a similar irradiation. 

This damage is comparable to thxt  of'thc 

The characteristic time in the recovery process is on the order of hours. 

Since the rate of electron irradiation is 1 x 101"e/cmahr, the radiation time 

for an accumulated flux of 1 x 101*e/cma, which is less than 1 minute, is 

negligibly in comparison with the recovery time. When we study the case of 

large flux damage, more complications arise, and additional considerations 

will be made. 

Therefore, in the first study we will confine ourselves to low flux levels of 

electron radiation. In the development of the analysis, more specific aspects 

such as the dependence on the temperature, the flux level, the flux rate, and 

the defect state will be discussed separately. 

Solar cells made by the best methods presently available, with some variation 

of the temperature and the time of diffusion were received from the contractors 

(Reference 15) at different times and irradiated with 3 x 101*e/cma of 1 Mev 

electrons. Recoveries were measured periodically up to several weeks in some 

cases. Froin the data, we obtained histograms (Figures VI-2, VI-3, and VI-4) 

of the relation between the initial performance characteristics and the degrad- 

ation due to the radiation of 115 solar cells. This statistical resul t  is prelim- 

inary. At a la dr stage, when processes can be better controlled, a more 

specific analysis will be made. 

tion and recovery as a function of the original value of the short circuit current 

(i), open circuit voltage (v), and efficiency (q). 

2 
The histogram shows the value after degrada- 
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There is a slight correlation o f  a general increase of unrecoverable damage as 

the photovoltaic parameters 01 i, v and n are increased. But t!ere is also cvi- 

dence of a c-onsidcrable scattering of data which leaves a question unanswered: 

Wiethcr the correlation is  an intrinsic property of the Wysocki solar cell, o r  

whether i t  merely represents a transitory technological problcm. This yues- 

tion may soon be answered when large numbers of cells are produced under 

bctter controlled conditions. At present, the physical evidence does not pro- 

vide a definitive correlation, a t  least in the low flux level case considered here. 
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VII. DEFECT CONCENTRATION DEPENDENCE O F  DEFECT 
INTRODUCTION RATE 

The study of the defect introduction rate in the Wysocki cell is complicated by 

the simultaneous occurrence of annealing. Two simplified experiments can be 

made: 

1. The rate of defect introduction is much greater than the rate of 

defect annealing, and 

2. The reverse of 1. 

The van de Graaff irradiation, at  a rate of lo1' to lo1" e/cma -hr will approxi- 

mate the first experiment when a total flux of less than 1 x 1OI5e/cma is used. 

Beyond this total flux level, the introduction and the annealing rate become 

comparable. On the other hand, in ordinary space radiation conditions the 

situation is closer to that of the second experiment. While the actual space 

radiation experiment is to be carried out in the near future, another experiment 

which will be closer to the space radiation one is also in preparation, which 

will provide a prolonged period of continuous radiation by means of a y-source 

or isotope source. This investigation is in progress. 

Figure VU-1 shows the radiation damage of 10 cells with initial spread also 

indicated. Sometimes the practice in the literature has been to use a single 

cell and irradiate it to successive high flux levels. Because there is evidence 

that the damage rate depends on the flux level as well as on the damaged state 

of the cell, fresh cells are used in each flux level experiment. The data are 

analyzed with the usual Equation of the degradation of the lifetime, 

. 
VII-1 
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where T and T are the lifetime before the irradiation and after the irradiation 

and recovery, respectively, @ is the flux in e/cm2, and K is an adjustable 

parameter. In this equation, a shift of Fermi level due to the carrier removal 

is neglected. Since the diffusion coefficient D and diffusion length L are  

related by 

0 

D = L 2 ,  
7 

VII- 2 

and L is proportional to the short circuit current i, we have 

VII-3 

By fitting data at @ = 1 x 

K' = 1.51 x (cm4/amp2-e). VII-4 

Equation VII-3 is computed with this K' value and is shown as  a continuous 

curve in Figure VII-1. The curve fitting is excellent in the low flux region. 

The deviation at 3 x 1015 e/cma can be explained by the spontaneous recovery 

taking place during the irradiation, that is, the initial damage after the 

cessation of the radiation is lower than that which would be caused by a pulse 

o f 1  x 1015 e/cm2. 

The same observation applies to the data of 1 x 10l6  e/cm2 radiation. In 

this case, an extrapolation from the data of 3 x 1015 would indicate a stronger 

deviation from the value predicted by Equation VII-3. The weaker deviation 

observed can be explained by an onset of a steeper damage introduction rate 

near this high flux. 
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To improve the analysis, a narrow band penetrative light source was used 

and the residual damage was analyzed. The result will be discussed in the 

next section. 
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VIII. 

In the study of the annealing of radiation-induced defects in seniiconductors 

some evidence was obtained on the dependence of the annealing rate on the 

concentration of impurities (Reference 20). 

DEFECT CONCENTRATION DEPENDENCE OF ANNEALING RATE 

When the irradiation is carried out at room temperature, most of the defects 

formed in Si are stable up to several hundred degrees centrigrade". Therefore, 

isothermal annealing, on which the annealing rate is measured, has to be 

carried out at high temperatures. This introduces some complexities in the 

interpretation of the data since the activation energy of the annealing itself 

could depend on the temperature (Reference 21). This difficulty is minimized 

in the case of annealing of the defects in the Wysocki cell because in this case 

both the radiation and annealing occur at  room temperature. Therefore, the 

entire experiment can be carried out at a single temperature. 

Solar cells are irradiated with different total fluxes of 1 Mev electrons at a 

rate of 3 x l O l a  e/cm2 sec. The specimen is placed on a water-cooled 

aluminum plate, and the temperature rise during the irradiation is less than 

5' C. The isothermal change of the short circuit current of the solar cell at 

room temperature is measured. The data are shown in Figure VIII-1. 

In the initial stage of recovery, an exponential time dependence adequately 

describes the experiment result. We have, for the fraction of residual 

damage f ,  

i - i % exp (-t/T), 
o a  

VIII- 1 

* R. R. Hasiguti and S .  Ishino, loc. cit. Reference 6; p. 259. 
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Where i is the short circuit current, the subscripts o and a stand for initial 

and after annealing, respectively, and t is the time variable. The results 

are given in the following table. The recovery time is evaluated from the 

linear portion of the curves. 

Specimen 

1 

2 

3 

4 

5 

6 

7 

io ma/2 cm2 

53.5 

53.2 

49.4 

49.4 

50.8 

50.0 

49.2 

Table VIII-1 

Total flux/cma 

1 x 1014 

3 x 1014 

3 x 1014 

1 x 10l6 

1 x 10l6 

3 x 1015 

3 x 1015 

r x i o 4  sec ma/2 cm2 

1.1 

1.4 

1.9 

2.5 

2.8 

10.6 

1 0 . 6  

In a more extensive analysis, it is necessary to minimize the contribution 

of p-region degradation. This is achieved by injecting a penetrating light of 

8420 (with l O O a  bandwidth). Furthermore, a linear proportionality between 

the diffusion length and the short circuit current, is assumed and the life time 

of the minority carriers to be proportioned to L-2 therefore, the fraction of 

the annealed defects is defined as 

f =  (i -a - i -a ) / (i@ - io  -a ), 
a 0 

VIII-2 

where i is the short circuit current after irradiation with a total flux i 9 .  
@ 

In the computation of f ,  we have subtracted a portion of the photovoltaic current 

i from i The current i represents the defference between i and i mea- 
C 0' C 0 a 

sured after a very long time when no further change in i is observed. a 
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This portion of i obviously is contributed by other types of defects and 

therefore is subtracted in our analysis. 

Figure VIII-2 shows the isothermal annealing data of f for specimens with 

different total fluxes of irradiation. We observe a shift of the isothermal 

annealing curve towards the longer time. This corresponds to an increase 

of the recovery time as  the defect concentration is  increased. 

The important implication of this result is that the dependence of the recovery 

rate on the defect concentration is opposite to the prediction of current models 

which can be collectively represented by (Reference 22) 

1 f =  l + h N i g r  ' 

where N is the concentration of defects and X is a positive parameter inde- 

pendent of . From the dimensional structure, therefore is a measure 

of the recovery time. Since N is  a positive increasing function of 8 ,  Equation 

VIII-2 predicts a decrease of the recovery time with respect to the concentra- 

tion of defects. 

8 

ip 

Taking an arbitrary level of f ,  we obtain the concentration dependent recovery 

time r which is  given in Figure VIII-3. 

approximation is obtained by 

For values of r at f = 0. 50, a good 

= 74.5 exp (2.86 x lo-' @ 1/3). VIII-4 
5 

On the other hand, for values of rat  f = 0.10, 

r = 5.06 x 10' exp (2.73 x 0.1 

34 
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It  is interesting to note that the main difference between Equations VIII-4 and 

VIII-5 is the pre-exponential factor. The numerical values given in Equations 

VIII-4 and VIII-5 could conceivably be dependent upon the processes and the 

detailed technology of the solar cell fabrication. The importance is that a 

@ dependence describes well the general behavior. 

From the same data, we can analyze the dependence of the fraction of the 

residual damage on the concentration of the defect. 

result, The curve is calculated from the following equation: 

Figure VIII-4 shows the 

f = 6 . 3 8  X exp (2.12 X @'I3). VIII- 6 

-2 -2 In the same figure, 6 = i 

is also found to be a satisfactory description of the experimental data. 

Within the experimental accuracy, the coefficients in the exponential can 

be treated as if they were about the same. 

- i is also shown. The same i l l3 dependence i 0 

We will return to this discussion in  the section entitled "Kinetics of 

Annealing. 1' 
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Ix. KINETICS OF ANNEALING 

In the early investigation of the annealing, the experimental data used in making 

comparisons with physical models was exclusively that obtained from isothermal 

and isochronal annealing. (Reference 23). Our investigation shows that the flux 

dependence of the annealing provides a more stingent test of the physical model. 

By this test, we have proved that currently existing annealing models predict 

annealing properties in contradiction to the experimental observations. A 

phenomenological model is proposed* in which an interaction is assumed be- 

tween defects, and consequently the activation energy of defect formation and 

annihilation becomes a function of the defect concentration. 

Since the above work has already been reported in the literature, a repeated 

description, even if i t  could have some pedagogical value in constructing some 

mathematical approved--the original papers are necessarily brief because they 

appear as letters--will not be attempted here. At this stage, a more impor- 

tant problem is to look for the physical foundation of this model. 

First, we will estimate the activation energy represented by Equation VIII-5: 

T O .  1 = 5 .06  x loa exp 2.73  x lo-' @ '/"set. IX-1 

Since the experiment pertains to room temperature (3OO0K), we have 

1 3 11610 
2.73 x lo-' @ / = - El 9 300 

Ix-2 

where E, is the defect Concentration dependent part  of the activation energy. 

*P. H. Fang, Phys. Letters. 24 A, (251) 1967. 
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In this sense, 

r o  = 5.06 X lo2 exp (-E,/kT) , l x -3  

where Eo is independent of concentration. From the discussion in the section 

entitled "Li-Solar Cell Technology, '' we will tentatively assign 

Eo = 0.66 ev. IX-4 

Therefore, T = 1 . 0 1  x lO-'sec. On the other hand, 

E, = 7 . 0 6  x io-' 4 IX- 5 

The defect production rate in n-type Si is on the order of 0 .1  to 0.01. In this 

case, 

El = (1.52 to 3.29) x n1l3, IX- 6 

where n is the defect density. Therefore, for n = lola, E, = 1.52 to 3.29 mv; 

for n = E = 15.2 to 32.9 mv. This is quite small compared with the E o  

value of 660 mv; therefore, the E-value will dominate in the measurement of 

the activation energy. 

In the search for a possible mechanism, we note that in the case of Hall con- 

ductivity in germanium (Ge) an impurity concentration dependent activation 

energy is given by (Reference 24, 25), 

E = E, - (2.35 to 4.3)  x 10-8n1/3ev. Ix-7 

The numbers involved a re  not very different. The positive sign in the case of 

Equation E - 6 ,  versus the negative sign in the case of Equation IX-7, for the 

. 
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term nl/%ould be attributed to the increase or the relief of the strains in the 

lattice respectively. 

Finally, according to the previous work*, we have the following kinetic equa- 

tion: 

IX- 8 dn n = m  ( -El/kT).  

After integration and taking n = Q-, at t = 0, 

( a n O 1 h  -r (an = t/1506. IX-9 

This will be the isothermal equation. The value of ais given by Equation Lx-6 

and is dependent on the temperature. 

*P. H. Fang, Phys. Letters 24 A, (251) 1967. 
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X. DYNAMICS OF ANNEALING 

The problem to be discussed is the situation one would encounter in space 

applications. In view of the scarcity and the tentativeness of the available data, 

the point to be stressed is the qualitative characteristics rather than the actual 

numerical value of the computations. 

Based on the equation of the kinetics of annealing, if there is a simultaneous 

.recovery in the presence of a radiation source with a flux of v electrons per 

second, the complete equatian of dynamical balance becomes 
dn n em(-(Yn 1/3) 

+ v9 x- 1 - =  

70 dt 

where the numerical values of (Y and.ro are given by Equations IX-1 and IX-6, 

respectively. In the case of v = 0, Equation X-1 can be solved in closed form 

as given by Equation IX-9. In the case of v # 0, numerical methods have to 

be applied. However, an analysis can be made with the following asymptotic 

method. 

Expanding the first term of the right side of Equation X-1 about a point no - 
corresponding to the initial value of the defect density, Equation X-1 becomes 

approximately (A - I/T~) , and 

= A-Bp, 

where p = n - no. We therefore obtain 

-Bt . 1 -e A 
P = B  

x-2 

When B >O, the time development is a slow process, but when D O  the time 

development i? rapid. 
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We have the following table, where the regions a re  shown in Figure X-1 

for  case 2. 

Region A B Characteristic 

I + + Slow increase in damage 

I1 + - Fast increase in damage 

111 - + Slow annealing 

IV - - Fast annealing 

The solid curve in Figure X-1 represents n/7 for various values of n where v 

is larger than a maximum of n/T . The four regions are  represented by dif- 

ferent shaded areas. It is interesting to see that in region 11, which represents 

a heavy initial damage, a s  time progresses, even at moderate irradiation rates 

the damage will increase further. 

In case 1, where v = max (n/T), regions III and IV vanished. Therefore, no 

apparent annealing would be observed. On the other hand, if v is very small, 

regions III and IV will be expanded, that is, the annealing region will  be 

dominant. 

The treatment here has been confined to the case where v does not change a s  a 

function of the time. In general, v is not a constant and the initial defect 

density has to be treated as a movable initial condition. The computation will  

be very complicated, but the principle involved is well illustrated by the 

present discussion. 
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XI. SOME EXPERIMENTAL RESULTS PERTAINING TO SPACE 
APPLICATIONS 

Some essential ingredients for simulating space conditions, from the point of 

view of radiation damage in solar cells, are: 

1. A spectrum of energetic rays and particles, mostly electrons and 

protons, with a moderate rate of about 10l1 to 1013 particles/cma-day. 

2. An ultrahigh vacuum. 

3. A system temperature from -100' to 5OoC. 

In performing the experiments, for ordinary solar cells which have no signifi- 

cant annealing effects in the space environment, the radiation damage of solar 

cells depends only on the total radiation dose, but not on the dose rate. There- 

fore, the true function of the radiation v(t) is not important. A s  discussed in 

the section entitled "Dynamics of Annealingfv, in the case of the Li solar cell 

v(t) is of fundamental importance. The status of the present knowledge of some 

basic parameters required to predict the damage behavior for a given v(t) is 

such that even a semiquantitative estimation cannot be made. This implies the 

importance of obtaining information regarding the energy spectrum and dose 

rate of the radiation source. 

A high vacuum condition could be important and beneficial especially in the case 

of low energy irradiation. In a special experiment carried out in an ambient 

atmosphere, we observed that a prolonged radiatian for several weeks on solar 

cells definitely leads to a discoloration of the silicon oxide antireflecting surface. 

This is caused by the surface bombardment by gas ions originating in the atmos- 

phere. 

The temperature effect of the radiation damage and annealing in the Li solar 

cell has not been studied sufficiently. Some initial observations imply that 
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the high damage introduction rate occurs at a temperature of -5OOC or  below. 

A t  temperatures higher than 7OoC, a simultaneous annealing is so effective 

that no appreciable damage is observed. 

Some special experiments already carried out or now underway will now be 

discussed 

1. Dose rate dependent experiment. In this experiment, van de Graaff 

irradiations of 1 Mev electrons of three flux rates a re  used, 1 x lo'", 1 x 

and 2.4 x 10l7e/cm -day. The total accumulated flux is 3 x 1014e/clna. 

Degradation of the short circuit current of three groups of solar cells, each 

group consisting of three, is measured 1 hour after the cessation of the 

radiation (Figure XI-1). 

First ,  we observe an increase of the residual damage a s  the flux rate is in- 

creased. An extrapolation indicates a vanishing residual damage if the flux 

rate is less than 1 x 1013e/cma-day. This is generally satisfied in the actual 

space environment. 

Second, the data presented were for the residual damage measured 1 hour 

after the cessation of the radiation. A further annealing to complete re- 

covery is obtained if two additional hours a re  allowed to lapse in the 

1 x 10'" e/cma-day radiation case, while it requires 5 days for the 

2.4 x 1017 e/cma-day case. Therefore, a slow radiation rate results in less 

damage; also, slow radiation requires less time for recovery even when 

"timefT is a sum of radiation time and annealing time. 
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The data of Figure XI-1 a re  obtained from solar cells fabricated 3 months ago. 

The experiment will be repeated with more recent solar cells in hopes of ob- 

taining better statistics from an improved type of solar cell. 

2. Repeated and interrupted radiation, In this experiment, a group of 

solar cells is irradiated with a flux rate of 1 x 1016e/cma-hr to the desired 

level of accumulated flux (solid points in Figures XI-2, XI-3, and XI-4). The 

second group is irradiated at the same rate to 3 x 1014e/cma (circular points 

in Figures XI-2, XI-3, and XI-4) and is repeated each time after about 10 days. 

The results show that the degradation in the case of repeated radiation and inter- 

ruption, for an equal accumulated flux, is smaller than in the case of a contin- 

uous radiation. In the same figure, a few triangular data points a r e  given. 

This data represent the Type II Li cell which was described in the section en- 

titled "Different Types of Li Solar Cells". At high accumulated flux levels, 

the Typr 11 cell definitely shows a lower level of degradation. But in the case 

where the defect introduction rate is not excessive such a type of solar cells, 

which represents a somewhat complex construction, is probably not necessary. 

Although Figures XI-2, XI-3, and XI-4 give the statistical distribution of the 

experimental data, a simple arithmetic average, which gives a somewhat 

clearer picture, is given in Figures XI-5, XI-6, and XI-7. 

3. Some other experiments in prospect are: (a) Use a h9"- ygo isotope 

source for 8-rays and irradiate at a level of 1 x 10lae/cma-day in vacuum con- 

ditions at different temperatures; @) determine the stability of the Li cell at 

different temperatures with different damaged states; and (c) determine the 

effect of photon injection on the rate of defect introduction and annealing. 
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XI1 . OUT1,OOK 

Some b:wkgrouud material and our present knowledge have becn discussed 

so far. We now face the inevitable question of the comparison between the 

merits of the Li cell and those of the current n-on-p cell. 

this rather premature problem, sonic points to be kept in mind arc cnumcr- 

ated as follows. 

In order to discuss 

1. Our knowledge of the structure of the defects as well  as the 

mechanism of annealing is generally confined to some phenomenological 

observations. Therefore, we  can predict neither the limit of the optimum 

efficiency in the initial performance nor the extent of the recovery which can 

be expected. This gap will  be filled by an extensive program of basic studies 

centered on the following topics: Absorption band structure, local mode 

calculation, electron spin resonance, and Ha l l  measurement of interstitial or 

displaced Li paired with radiation-induced defects in the same Si. Some of 

these programs are in progress and others are in the active planning stage. 

2. More quantitative measurements on solar cells will be made, with 

special emphasis on stability versus precipitation with regard to Li or pair-  

ing of Li with other defects. The flux dependence of the stability, especially 

at a very high flux level, will be a most important problem. 

3. Because of the observation of the dependence of the introduction rate 

as  well as of the annealing on the defect concentration, analysis of the radiation 

damage requires a very specific description of the damage introduction rate 

and annealing condition. This includes the level of photon injection which 

produces a photovoltaic biased voltage; this in turn will influence the diffusion 

and the distribution of Li. 

4. Radiation damage due to different types of charged particle is in- 

teresting especially in the case of high-rate irradiation, as in the encounter 

with a solar flare, or in the case of neutron damage, where the defect dellsitY 

in some microscopic region could exceed that of Li. 
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In view of the above problems, it seems a correct conclusion that the im- 

portant question of actual application of the Li solar cell in space should be 

held in abeyance for a period of 6 months to 1 year until results are received 

from the extensive program which is now well in progress. 
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